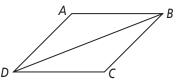
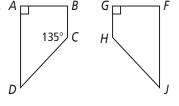
Standardized Test Prep

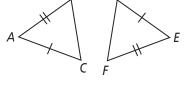
Congruent Figures

Multiple Choice


For Exercises 1-6, choose the correct letter.

- **1.** The pair of polygons at the right is congruent. What is $m \angle I$? C 135 A) 45
 - **B** 90 **D** 145
- 2. The triangles at the right are congruent. Which of the following statements must be true?
 - (H) $\overline{AB} \cong \overline{DE}$ (F) $\angle A \cong \angle D$ $\bigcirc \overline{BC} \cong \overline{FD}$ $\bigcirc \angle B \cong \angle E$
- **3.** Given the diagram at the right, which of the following must be true? B


 $\textcircled{A} \triangle XSF \cong \triangle XTG \quad \textcircled{C} \triangle FXS \cong \triangle XGT$


$$\textcircled{B} \triangle SXF \cong \triangle GXT \quad \textcircled{D} \triangle FXS \cong \triangle GXT$$

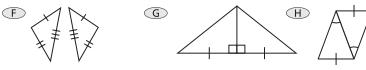
- **4.** If $\triangle RST \cong \triangle XYZ$, which of the following need not be true? (H) $\overline{RT} \cong \overline{XZ}$ (F) $\angle R \cong \angle X$ $\bigcirc \ \angle T \cong \angle Z$
- **5.** If $\triangle ABC \cong \triangle DEF$, $m \angle A = 50$, and $m \angle E = 30$, what is $m \angle C$? A) 30 **B** 50 C 100 D 120
- **6.** If $ABCD \cong QRST$, $m \angle A = x 10$, and $m \angle Q = 2x 30$, what is $m \angle A$? F) 10 G 20 (H) 30 \bigcirc 40 [2] $\angle ABD \cong \angle CDB$ and $\angle ADB \cong \angle CBD$, both by the Alt. Int Angles Thm. So, by Third Angles Thm., $\angle A \cong \angle C$. Because $\overline{DB} \cong \overline{BD}$ by the Refl. Prop. of Congruence, and we know $\overline{AB} \cong \overline{CD}$ and $\overline{AD} \cong \overline{CB}$, then all the corresponding parts are congruent and $\triangle ABD \cong \triangle CDB$. Short Response [1] incomplete proof [0] no proof or incorrect proof
- **7.** Given: $\overline{AB} \parallel \overline{DC}, \overline{AD} \parallel \overline{BC}, \overline{AB} \cong \overline{CD}, \overline{AD} \cong \overline{CB}$ **Prove:** $\triangle ABD \cong \triangle CDB$

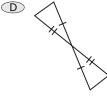
 $\bigcirc \overline{SR} \cong \overline{YZ}$

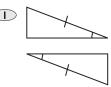
G

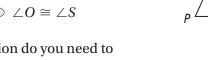
Standardized Test Prep

Triangle Congruence by SSS and SAS


Multiple Choice


For Exercises 1-4, choose the correct letter.

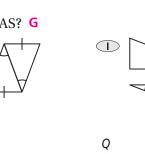

1. Which pair of triangles can be proved congruent by SSS? C

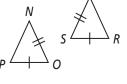

2. Which pair of triangles can be proved congruent by SAS? G

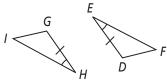
- 3. What additional information do you need to prove $\triangle NOP \cong \triangle QSR$? **D**
 - (A) $\overline{PN} \cong \overline{SO}$ $\bigcirc \angle P \cong \angle S$ $\bigcirc \overline{NO} \cong \overline{QR}$ $\bigcirc \angle 0 \cong \angle S$

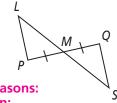
$$\textcircled{G} \overline{HI} \cong \overline{ED} \qquad \textcircled{D} \overline{GI} \cong \overline{DF}$$

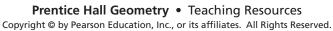
Short Response

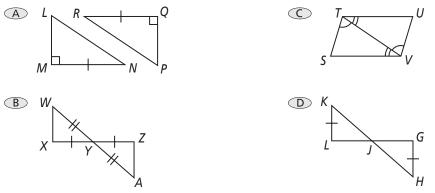

5. Write a two-column proof.


Given: *M* is the midpoint of \overline{LS} , $\overline{PM} \cong \overline{QM}$.


Prove: $\triangle LMP \cong \triangle SMQ$


[2] Statements: 1) *M* is the midpoint of \overline{LS} ; 2) $\overline{LM} \cong \overline{SM}$; 3) $\angle LMP \cong \angle SMQ$; 4) $\overline{PM} \cong \overline{QM}$; 5) $\triangle LMP \cong \triangle SMQ$; Reasons:

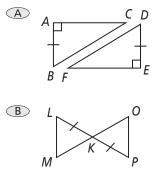

- 1) Given; 2) Def. of a midpoint; 3) Vert. △ are ≅; 4) Given;
- 5) SAS [1] incomplete proof [0] incorrect or no proof

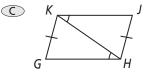

Standardized Test Prep

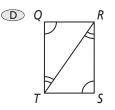
Triangle Congruence by ASA and AAS

Multiple Choice

For Exercises 1-4, choose the correct letter.


1. Which pair of triangles can be proven congruent by the ASA Postulate? C



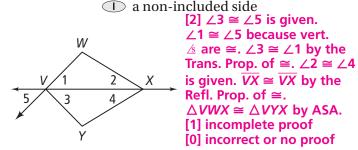

- 2. For the ASA Postulate to apply, which side of the triangle must be known? F
 - **(F)** the included side
- (H) the shortest side

G the longest side

- a non-included side
- 3. Which pair of triangles can be proven congruent by the AAS Theorem? D

4. For the AAS Theorem to apply, which side of the triangle must be known?

(F) the included side


(H) the shortest side

G the longest side

Short Response

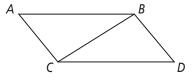
5. Write a paragraph proof.

Given: $\angle 3 \cong \angle 5$, $\angle 2 \cong \angle 4$ **Prove:** $\triangle VWX \cong \triangle VYX$

Class

В

Standardized Test Prep Using Corresponding Parts of Congruent Triangles **Multiple Choice** For Exercises 1-6, choose the correct letter. 1. Based on the given information in the figure at the right, how can you justify that $\triangle JHG \cong \triangle HJI$? **B** A ASA C AAS **B** SSS D ASA 2. In the figure at the right the following is true: А $\angle ABD \cong \angle CDB$ and $\angle DBC \cong \angle BDA$. How can you justify that $\triangle ABD \cong \triangle CDB$? **H** D (F) SAS (H) ASA G SSS **CPCTC 3.** $\triangle BRM \cong \triangle KYZ$. How can you justify that $\overline{YZ} \cong \overline{RM}$? **A** B SAS A CPCTC C ASA **D** SSS 4. Which statement *cannot* be justified given only that $\triangle PBJ \cong \triangle TIM$? (F) $\overline{PB} \cong \overline{TI}$ (G) $\angle B \cong \angle I$ (H) $\angle BJP \cong \angle IMT$ (D) $\overline{JP} \cong \overline{MI}$ 5. In the figure at the right, which theorem or postulate Ζ can you use to prove $\triangle ADM \cong \triangle ZMD$? **C** A ASA C SAS **B** SSS D AAS М D


- 6. In the figure at the right, which theorem or postulate can you use to prove $\triangle KGC \cong \triangle FHE$? **H**
 - (F) ASA (H) SAS G SSS **I** AAS

Prove: $\overline{AC} \cong \overline{DB}$

7. What would a brief plan for the following proof look like?

Given: $\overline{AB} \cong \overline{DC}$, $\angle ABC \cong \angle DCB$

С

Н

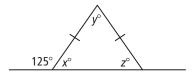
Ε

G

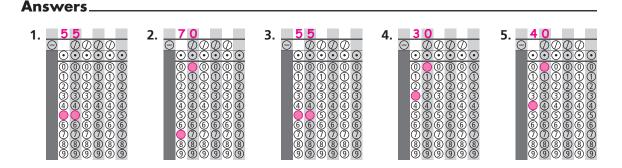
[2] $\overline{CB} \cong \overline{BC}$ by the Reflexive Property. $\triangle CBD \cong \triangle BCA$ by SAS. $\overline{AC} \cong \overline{DB}$ by CPCTC; [1] one step missing or one reason incorrect [0] incorrect or no response

4-5

Standardized Test Prep


Isosceles and Equilateral Triangles

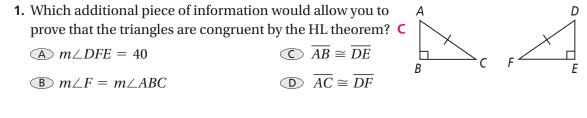
Gridded Response


Solve each exercise and enter your answer on the grid provided.

Refer to the diagram for Exercises 1-3.

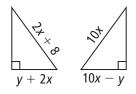
1. What is the value of *x*?

- **2.** What is the value of *y*?
- **3.** What is the value of *z*?
- **4.** The measures of two of the sides of an equilateral triangle are 3x + 15 in. and 7x - 5 in. What is the measure of the third side in inches?
- **5.** In \triangle *GHI*, *HI* = *GH*, $m \angle$ *IHG* = 3x + 4, and $m \angle$ *IGH* = 2x 24. What is $m \angle HIG?$



Standardized Test Prep

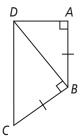
Congruence in Right Triangles


Multiple Choice

For Exercises 1-4, choose the correct letter.

2. For what values of x and y are the triangles shown congruent? F

(F) $x = 1, y = 4$	(H) $x = 4, y = 1$
G <i>x</i> = 2, <i>y</i> = 4	(1) $x = 1, y = 3$



- 3. Two triangles have two pairs of corresponding sides that are congruent. What else must be true for the triangles to be congruent by the HL Theorem? D
 - A The included angles must be right angles.
 - B They have one pair of congruent angles.
 - C Both triangles must be isosceles.
 - D There are right angles adjacent to just one pair of congruent sides.
- **4.** Which of the following statements is true? **H**
 - (F) $\triangle BAC \cong \triangle GHI$ by SAS.
 - **G** $\triangle DEF \cong \triangle GHI$ by SAS.
 - (H) $\triangle BAC \cong \triangle DEF$ by HL.
 - $\bigcirc \triangle DEF \cong \triangle GHI \text{ by HL.}$

G

Extended Response

5. Are the given triangles congruent by the HL Theorem? Explain. [4] No; they are right triangles, and have a pair of congruent leqs ($\overline{AB} \cong \overline{BC}$), but the hypotenuses, \overline{DB} and \overline{DC} , are not congruent. So, the triangles only meet two of the three conditions for congruence by the HL Theorem. [3] appropriate response plus a discussion of two of the three criteria for congruence [2] recognition only that the hypotenuses are not congruent [1] recognition that the triangles are not congruent [0] incorrect or no response

Class

Standardized Test Prep

Congruence in Overlapping Triangles

Multiple Choice

For Exercises 1–5, choose the correct letter.

1. What is the common angle of $\triangle PQT$ and $\triangle RSQ$? **A**

 $\textcircled{A} \angle PQT \qquad \textcircled{C} \angle SRQ$

Use the following information for Exercises 2-5.

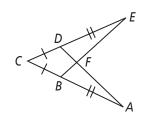
Given: $\triangle ZWX \cong \triangle YXW, \overline{ZW} \parallel \overline{YX}$

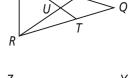
Prove: $\triangle ZWR \cong \triangle YRX$

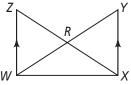
2. Which corresponding parts statement is needed to prove $\triangle ZWR \cong \triangle YRX$? **H**

$$\bigcirc \angle Z \cong \angle R \qquad \qquad \bigcirc WX = WX$$

- **3.** A classmate writes the statement $\angle ZRW \cong \angle YRX$ to help prove the congruence of the triangles. What reason should the classmate give? **D**
 - A Given
 - (B) Angles cut by a bisector are congruent.
 - C Base angles of an isosceles triangle are congruent.
 - D Vertical angles are congruent.
- **4.** After using the congruence statements from Exercises 2 and 3, which statement can be used to prove the triangles congruent? **F**


$\textcircled{F} \angle Z \cong \angle Y$	$\bigcirc H \overline{WX} \cong \overline{WX}$
$\bigcirc \angle ZWR \cong \angle RYX$	$\bigcirc \overline{WR} \cong \overline{RX}$


5. Which theorem or postulate will prove $\triangle ZWR \cong \triangle YRX$? **D** (A) SAS (B) SSS (C) ASA


D AAS

Short Response

6. In the diagram at the right, which two triangles should be proved congruent first to help prove △ABF ≅ △EDF?
[2] △ACD and △ECB [1] Correct △ named but vertices do not correspond. [0] incorrect △ named

