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1 Introduction

The idea of vectors is one of the most fundamental and useful in all of physics. There are
many different quantities that can be expressed as a vector, including the force acting on a
particle. In this experiment we will review and apply the main ideas of vectors, including
their addition, both graphically and algebraically. After reviewing the basic ideas of vectors,
we will use a force table to understand how to add together the different forces acting on a
system to determine the conditions for equilibrium. The system is in equilibrium when the
sum of the forces acting on that system is zero.

2 What Are Vectors?

Some properties of a system can be entirely described in terms of a single number. Once this
number is given, we know everything about that property of the system. For example, a rock
might have a mass of 500 grams, or the temperature of a room might be 23◦ C. Quantities
that can be specified in terms of a single number are called scalars. Examples of scalars
include mass and temperature, as well as other quantities like energy, or electric charge.

Then there are other quantities that need more information to be completely specified.
Suppose you want to take a drive along the freeway at 70 miles per hour. You’ve decided
on a speed, but that’s not quite enough to figure out where you’re going. You also need a
direction to drive, say north. Once you have a speed and a direction, only then do you know
enough to start your drive.

Your speed and direction together give you your velocity. To fully determine the velocity
we had to specify a magnitude (the speed, 70 mph) and also a direction (north). This is
different than scalars, which had only a magnitude associated with them; for example, the
mass of the rock was 500 grams – no direction needed. Quantities that have both a mag-
nitude and direction are called vectors. Examples of vectors include velocity, acceleration,
momentum and, as we’ll use below, force.

Now that we have an idea of what vectors are, let’s discuss some ways of representing
them in calculations.
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2.1 Vectors as Arrows
Because a vector has a magnitude and direction associ-
ated with it, we can easily picture it as an arrow, as seen
in the figure to the right. We can label this vector as
A (often times the vector is instead labeled by an arrow

over it, ~A, especially when written by hand). The arrow
has a magnitude (it’s length), and also points in a cer-
tain direction, and so it contains everything we need to
describe the vector. A different vector, B, points in a
different direction, and has a different length, and so a
different magnitude.

A B

2.1.1 Adding the Arrows

Suppose we want to add together the arrows, A
and B. Why might we want to do this? Suppose
the vectors A and B represent displacements; we
walk 1.5 km to the northeast (A), and then turn a
bit more north and walk another 1 km (B). How
far have we gone from our starting place? We can
figure this out by adding together the two vectors.
Adding together the vectors is as simple as placing
the tail of B on the head of A. Then you draw a
new vector C from the tail of A to the head of B.
The resulting vector C is the sum of A and B,

C = A + B.

A

B
C

We can always slide the arrows around, keeping the length the same, as long as we don’t
change the angles ! So, we are always free to put the tail of one vector on the head of the other.

A

B

C

Suppose that we want to add the vectors in
the opposite order. In our earlier example,
we instead walk mostly north for 1 km, and
then turn toward the east and walk for 1.5
km. How far do we go? Do we end up
in the same place? In order to add the
vectors in the opposite order we start with
the vector B, and place the tail of A on
the tip of B. We then draw the resulting
vector C, as in the figure to the left, and
so

C = B + A.
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The resultant vector, C, that we get adding A and
B in different orders looks the same, but we can
check that it really is the same. Consider the dia-
gram to the left, where A and B are added in dif-
ferent orders, combining the previous two figures.
It’s clear that the resultant vector is the same in
both cases. So, it doesn’t matter in which order
you add the vectors,

A + B = B + A.

The addition of vectors is commutative.

A

B

C

A

B

Suppose that we have three vectors, A, B, and C. We can add all three of these vectors
as before, first putting the tail of B on the head of A, then placing the tail of C on the head
of B. Then you draw the resultant vector from the tail of A to the tip of C. Or, you could
first put the tail of C on the head of B, then put the tail of B on the head of A and draw
the resultant vector as before. The resulting vector is the same in both cases, so

(A + B) + C = A + (B + C) .

In addition to being commutative, we say that vector addition is also associative. We can
add as many vectors in this way as we want.

A -B

C

What if we want to subtract a vector from an-
other? Suppose we start with our vectors A and
B, as before. To subtract B from A, all we do is
flip B around 180◦, making −B, and then add it
to A, as in the figure to the left. Then we draw a
resultant vector, C, from the tail of A to the tip
of B. So, this means that

A−B = A + (−B) .

To subtract A from B is done in the same way,
now flipping A around, and putting the tail of
A on the tip of B. Then you draw the resultant
vector.
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2.2 Vectors in Component Form

Representing vectors as arrows is a nice geometric picture
that works well for certain applications, but sometimes
we may want more information than the arrow can pro-
vide. For example, suppose we want to know how far the
arrow A goes to the right, and how far it goes up. In
order to do this, we need a coordinate system. Draw a
usual two-dimensional Cartesian coordinate system with
x and y axes, as seen in the figure to the right, with the
tail of the vector set at the origin, being careful not to
change the direction of the vector. The vector makes an
angle θ with respect to the x axis. x

y

θ

Ax

Ay

A

The tip of the arrow stretches a certain distance along the x axis, which is labeled as Ax.
This is the x-component of the vector A. Similarly, the tip of the arrow has a y-component,
Ay. So, instead of representing the vector as an arrow with a certain direction, we can specify
it by saying how far it goes along the x and y axes. How do we find these?

Suppose that the magnitude of the vector is written as A, without either the boldface
type, or the arrow over the top. The magnitude of a vector is often written as A = |A|. So,
the length of the arrow is A. From the geometry of the figure and Pythagorus’ theorem, we
see that

A =
√
A2

x + A2
y,

where we take the plus sign for the square root since it’s a length. So, if we know the
components of the vector, we immediately know it’s length, which is always positive. We
can also find the angle that the vector makes with the x axis. Again, from the geometry we
see that the tangent of the angle, tan θ = Ay

Ax
, and so

θ = tan−1

(
Ay

Ax

)
.

So, knowing the components of the vector, we can rewrite it as a magnitude and direction.
Suppose we go the other way; suppose we know the length and direction of A and want

the components. Again, going back to the figure, and recalling that the length of A is A,
then

Ax = A cos θ
Ay = A sin θ.

Notice that if we divide Ay by Ax we get tan θ, as before. So, we now have the components
of the vector, and we can express it in terms of these components. There are several ways
to do this. One way is to give the components in parenthesis, A = (Ax, Ay). However, there
is a more common way that we will use.
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We’ve expressed our vector by saying how far
along the x axis it goes (the x component), and
how far along the y axis it goes (the y compo-
nent). Consider the figure to the right. Using the
ideas of adding vectors that we discussed before,
we can write

A = B + C,

where the vector B is entirely along the x axis,
and C is entirely along the y axis. In other
words, we write the vector A as the sum of two
vectors - one along x and the other along y.
Choosing our vectors to lie along these axes is a
very convenient basis to use.

x

y

θ

A

B

C

Now, what are the vectors B and C? The length of B is just the x component of A,
|B| = B = Ax. Similarly, the length of C is just the y component, |C| = C = Ay. Because
we can always describe a vector as a magnitude and a direction, we can say that B has a
length Ax, and points along the x axis. Now, a convenient notation for a vector that points
along the x axis is to give it’s length, multiplied by a unit vector, î, which has a length of 1,
by definition. So, suppose that the vector B has a length 3 and points along the x axis. It
can then be written as B = 3̂i. More generally for us, B = Axî, since the magnitude of B is
Ax.

What about the vector C? We can express C as a vector of length Ay, pointing along the
y axis. We can just do the same thing as before, writing C = Ay ĵ, where ĵ is another unit
vector, this time pointing along the y axis. So, since A = B + C, we can plug in B = Axî,
and C = Ay ĵ, to finally find

A = Axî+ Ay ĵ.

This is a complete specification of the vector A in terms of it’s components. Sometimes the
unit vectors are denoted slightly differently, writing x̂ and ŷ instead of î and ĵ, but it’s just
a notation. We’ll stick with î and ĵ.

So far, all the vectors that we have discussed had
only two components, Ax and Ay, corresponding
to a two-dimensional vector. This is useful for
drawing vectors on a 2D piece of paper, but we
really live in three dimensions, x, y, and z. For
example, suppose you walk 4 meters straight
ahead, turn left and walk 3 meters, and then
climb 2 meters up a ladder. How far away from
your starting point are you? The vector that
would connect your final spot to your starting
places now moves along all three axes, as seen in
the figure to the right.

y

z

A

x

It’s very straightforward to generalize the vector to three dimensions. All we have to do
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is to add a piece that tells us how far the vector moves along the z axis. If the component
along the z axis is Az, and if we denote the unit vector along this axis as k̂, then we can
write the vector as

A = Axî+ Ay ĵ + Azk̂,

where the length of the vector is now

|A| = A =
√
A2

x + A2
y + A2

z.

Notice that if the vector doesn’t go into the z axis (meaning that Az = 0), then we get back
the old 2D result. For what follows we’ll limit ourselves to the 2D case, but the expressions
generalize straightforwardly.

2.2.1 Adding the Components

We’ve seen how to add two vectors graphically
by adding the arrows. How can we do it using
the components? Consider the figure to the right,
where we add the vectors A and B to get the re-
sultant vector C. Using the ideas discussed above,
we can write the resultant vector as

C = Cxî+ Cy ĵ.

How do the components Cx and Cy compare to
the components of A and B? From the figure, we
can see that Cx stretches along the x axis, and
is given by the sum of the Ax component, which
stretches from the origin to the point labeled Ax,
plus the Bx component, which stretches from the
point Ax to the point Bx. So, Cx = Ax + Bx.
It’s easy to see that Cy = Ay+By in the same way. x

y

θ

Ax

Ay

A

B

Bx

By

A

θBC

So, it seems clear that to add two vectors, we just add the components. Let’s see how
this works algebraically instead of geometrically. We know that we can write C = Cxî+Cy ĵ,
in general, while A = Axî+ Ay ĵ, and B = Bxî+By ĵ. So, C = A + B, gives

Cxî+ Cy ĵ =
(
Axî+ Ay ĵ

)
+
(
Bxî+By ĵ

)
= (Ax +Bx) î+ (Ay +By) ĵ,

after collecting the terms. Now, the unit vector î points along the x axis, while ĵ points
along y. These two vectors point in perpendicular directions, and are independent of each
other (how far the vector stretches along x has nothing to do with how far it goes along y).
This means that we can compare the left- and right-hand sides of our expression and match
the coefficients of the unit vectors. This means that

Cx = Ax +Bx

Cy = Ay +By.
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So, it really is true that we just add the components to add the vectors. What if we want to
subtract two vectors, in terms of the components? Recall that A − B = A + (−B). Now,

−B = −
(
Bxî+By ĵ

)
= −Bxî − By ĵ. So, adding the negative of B means that we just

subtract the components,

A−B = (Ax −By) î+ (Ay −By) ĵ.

Thus, completely generally we have

A±B = (Ax ±By) î+ (Ay ±By) ĵ + (Az ±Bz) k̂.

2.3 Rotating the Coordinate Axes

We began our discussion of vectors by describing them as arrows pointing along a certain
direction. This is the purely geometrical description of the vector that doesn’t need any sort
of coordinate system - we drew the arrows without any axes. Later we introduced a coordi-
nate axis so that we could figure out the components of the vector. We decided to draw a
particular axis such that the vector made an angle θ with respect to the x axis. This gave
us components, Ax = A cos θ, and Ay = A sin θ. But - we just introduced that coordinate
system, without any real motivation. How do we know it’s right? What if someone else used
a different coordinate system, such that the vector made a different angle with respect to
the x axis? Wouldn’t the components be different?

Let’s try to figure this out. Suppose that
we look at our coordinate system, and
then imagine that someone else uses a
different coordinate system that is rotated
relative to ours by an angle φ. This means
that the new x and y axes, denoted with
a prime, x′ and y′, are rotated by φ. We
superimpose the two coordinate systems
as in the figure to the right. Notice that
we haven’t touched the vector at all! Now,
we still see the same components for the
vector, Ax = A cos θ, and Ay = A sin θ.
What does the other person see? x’

y

θ
Ax

Ay

A

φ

α
Ax’

Ay’

y’

x’

The other person sees new components, Ax′ and Ay′ , because they are using new axes.
If the vector makes an angle α with respect to the x′ axis, then the other person finds
Ax′ = A cosα, and Ay′ = A sinα. Now, from the diagram, α = θ − φ, and so

Ax′ = A cos (θ − φ)
Ay′ = A sin (θ − φ) .

So, unless φ = 0 (meaning we use the same coordinates), we don’t see the same components,
in general. Isn’t this a problem? After all, we never touched the vector, itself - only the
coordinate axes. Did we change the vector by changing the components?
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It turns out that this is not a problem. Although the components have, indeed, changed,
the vector still points in the same direction (although the angle that we use to define that
direction has changed). All we have done is to turn our head a little bit and look at it at an
angle. The real, physical vector hasn’t changed. This is the important idea: even though the
components that we use to describe the vector depend on our choice of coordinate system,
any real physical properties of the system don’t!

One obvious physical property of the vector is it’s length. A real arrow that’s 30 cm
long will always be 30 cm long, no matter how you twist or turn it. For us, the length

is
√
A2

x + A2
y =

√
A2 cos2 θ + A2 sin2 θ = A. For our friend, the length is

√
A2

x′ + A2
y′ =√

A2 cos2 (θ − φ) + A2 sin2 (θ − φ) = A, and so we agree! The length of the arrow is a real,
physical thing, and cannot change, no matter how we rotate (or slide around) the vector.

3 Some Prelab Questions

1. On the graph to the right,
draw a coordinate axis, and
also the following vectors:

(a) 3̂i

(b) 4ĵ

(c) 3̂i+ 4ĵ

(d) 5̂i+ ĵ

2. What are the angles of each of the vectors, as measured from the x axis, in question 1?
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3. On the graph to the right,
draw a coordinate axis,
and add A = 4̂i + 3ĵ and
B = 2̂i+5ĵ graphically (i.e.,
add the arrows). What is
the equation of the resultant
vector? What angle does it
make with respect to the x
axis?

4. Suppose you go out for a walk. You walk straight ahead for 100 meters. Then you
turn to your left and walk for another 50 meters. Finally you turn to your right and
walk another 25 meters. How far are you from where you started? At what angle are
you, with respect to the direction you started out walking? Do this problem using
components.
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5. Suppose you don’t know two vectors A and B, but you do know C = A + B, and
D = A−B. Can you figure out A and B?

6. The figure to the right shows three ropes
tied together in a know. One of your
friends pulls on a rope with 3.0 units of
force and another pulls on a second rope
with 5.0 units of force. How hard, and in
what direction, must you pull on the the
third rope to keep the knot from moving?
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4 The Experiment

Now that we have become experts in vector manipulations, we want to apply these ideas to
a real system. One of the most important vectors in physics is the force acting on a system,
F. Newton tells us that if there are several forces acting on a system, F1, F2, etc., then the
net force acting on the system is just the (vector) sum of the forces

Fnet =
∑

i

Fi.

In particular, if the forces all cancel out then the net force on the system is zero. A system
with no net force acting on it is said to be in equilibrium. Newton also tells us that F = ma,
and so a system in equilibrium will not accelerate. A good way of studying a number of
forces acting on a system is through the use of a force table, which we’ll discuss now.

4.1 The Force Table Background

A force table is seen in the figure to the right. The table
consists of a circular table with markings ticking off 360◦.
Pulleys can be attached to the edge of the table, allowing
weights to be suspended from strings. Several weights
can be hung from a central ring, leading to several forces,
Fi, acting on the ring. When the forces are balances such
that the net force is zero, then the ring is at equilibrium.
It will be the purpose of this experiment to determine
the conditions for equilibrium for several different mass
configurations.

4.2 Experimental Setup

Materials Needed

• Force Table, including central ring and retaining pin

• Three Pulleys

• String

• Three Hanging mass rack with masses

• Protractor

• Ruler

• Bubble level
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Begin by using the bubble level to be sure that the table is level. There are a set of
leveling screws on the tripod to adjust the angle of the table. Place the retaining pin in the
center of the force table. Attach two pulleys to opposite ends of the table, at angles of 0◦

and 180◦. Next, attach two pieces of string to the central ring, each being long enough that
they can stretch over the pulley and hang several centimeters below the table. Next, attach
the mass racks to the free ends of the strings. Hang the mass racks over each of the pulleys,
with the retaining pin inside the ring.

4.3 The Experiment

We’ll begin with the simplest case: two hanging masses in one dimension. After that, we’ll
add another mass, and another dimension.

4.3.1 One Dimension

Begin by placing 50 grams on each of the hanging mass racks. Pull the retaining pin out of
the table. Does the ring move, or does it stay in one place? Why? If the ring moves, what
do you need to do to make it stay?

If the ring moves, then make your adjustments such that it stays fixed. What is the
magnitude of the force on each of the masses? The same two forces are acting on the central
ring. What are the directions of the forces acting on the rings (i.e., what are the angles)?
Finally, express each force as a vector in component form, taking θ = 0 to be the x axis.
Record each of these values in the data table below.

1D Trial 1 Results

Force Magnitude (N) Direction (θ) Vector

F1

F2
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On the graph to the
right, draw a coordinate
axis. Draw in the two
force vectors. Show
by adding the vectors
graphically that the
net force on the central
ring is zero. Verify this
algebraically by showing
that the sum of the
components is also zero.

Now, notice that you can slide the ring back and forth along the x axis, placing it at any
distance, and the ring will stay in place. This means that every point along the x axis is an
equilibrium point. Explain why this is the case.

Now we’re going to change the axes. Remove the two pulleys, and place them at angles
of 90◦ and 270◦, respectively. Keeping the x axis along θ = 0, we’ve now placed the forces
along the y axis. Repeat the earlier analysis with the new forces.

1D Trial 2 Results

Force Magnitude (N) Direction (θ) Vector

F1

F2
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On the graph to the
right, draw a coordinate
axis. Draw in the two
force vectors. Show
by adding the vectors
graphically that the
net force on the central
ring is zero. Verify this
algebraically by showing
that the sum of the
components is also zero.

We can still slide the ring back and forth, only now along the y axis. Now every point
along the y axis is an equilibrium point. What does this tell you?
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4.3.2 Two Dimensions

Now we’ll add a slight complication. Place the pulleys at angles θ = 45◦ and 225◦. If the x
axis is still defined by θ = 0, then the forces now have both x and y components. This now
makes the system two-dimensional. Repeat the experiment with these new values.

2D Trial 1 Results

Force Magnitude (N) Direction (θ) Vector

F1

F2

On the graph below, draw a coordinate axis. Draw in the two force vectors. Show by
adding the vectors graphically that the net force on the central ring is zero. Verify this
algebraically by showing that the sum of the components is also zero.

15



Yet again, we can still slide the ring back and forth, only now along the new axis. What
does this tell you?

Now, let’s add another pulley. Attach a third string to the ring, and the other end to
the third mass rack. Now, place two pulleys at angles θ = 0◦, and θ = 120◦. Replace the
retaining pin through the ring in the center of the table. Hang two mass racks over the
pulleys, and place 100 grams on each of them. Place a third pulley at some angle at which
you expect the system to balance (roughly what angle do you expect this to be?). Now, place
100 grams on the final mass rack, and thread it’s string over the third pulley. In general, the
system won’t balance for the random angle that you have chosen. Slide the pulley around
until the ring balances in the center. When it does, remove the retaining pin. For the angle
that you have found, enter your values in the following table.

2D Trial 2 Results

Force Magnitude (N) Direction (θ) Vector

F1

F2

F3

On the graph below, draw a coordinate axis. Draw in the three force vectors. Show
by adding the vectors graphically that the net force on the central ring is zero. Verify this
algebraically by showing that the sum of the components is also zero.
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In the one-dimensional case, we could slide the ring back and forth, and have it stay
where we set it. Can we do the same in this case? Why or why not?

So, translation of the origin doesn’t work in the two-dimensional case. What about
rotation of the coordinate system? Rotate all of your pulleys clockwise by 120◦, but keep the
relative angles between the pulleys fixed. Does the system still balance? Repeat the earlier
experiment for your new setup.
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2D Trial 3 Results

Force Magnitude (N) Direction (θ) Vector

F1

F2

F3

On the graph below, draw a coordinate axis. Draw in the three force vectors. Show
by adding the vectors graphically that the net force on the central ring is zero. Verify this
algebraically by showing that the sum of the components is also zero.

18



Finally, place 100 grams on a rack over a pulley at θ = 45◦. Next, place 200 grams on a
rack over a pulley at θ = 150◦. How much mass, and at what angle, do you need to balance
the forces? Record your prediction in the data table below.

2D Trial 4 Results

Force Magnitude (N) Direction (θ) Vector

F1

F2

F3 (theoretical)
F4 (experimental)

Now, perform the experiment and measure the angle and mass at which the system
balances. Record the experimental value in the data table. Do your results agree? If not,
what could be throwing off your results (i.e., what are some possible sources of error)?
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5 Some Last Questions

1. A field mouse trying to escape a hawk runs east for 5.0 m, darts southeast for 3.0 m,
then drops 1.0 m straight down a hole into its burrow. What is the magnitude of the
net displacement of the mouse?

2. A flock of ducks is trying to migrate south for the winter, but they keep being blown off
course by a wind blowing from the west at 6.0 m/s. A wise elder duck finally realizes
that the solution is to fly at an angle relative to the wind. If the ducks can fly at
8.0 m/s relative to the air, what direction should they head in order to move directly
south?

3. Show that the components of a vector in a coordinate system rotated by an angle φ
can be given in terms of the original components as

Ax′ = Ax cosφ+ Ay sinφ
Ay′ = −Ax sinφ+ Ay cosφ.
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